What Noseleaves Do for FM Bats Depends on Their Degree of Sensorial Specialization

نویسندگان

  • Dieter Vanderelst
  • Fons De Mey
  • Herbert Peremans
  • Inga Geipel
  • Elisabeth Kalko
  • Uwe Firzlaff
چکیده

BACKGROUND Many bats vocalizing through their nose carry a prominent noseleaf that is involved in shaping the emission beam of these animals. To our knowledge, the exact role of these appendages has not been thoroughly investigated as for no single species both the hearing and the emission spatial sensitivities have been obtained. In this paper, we set out to evaluate the complete spatial sensitivity of two species of New World leaf-nosed bats: Micronycteris microtis and Phyllostomus discolor. From an ecological point of view, these species are interesting as they belong to the same family (Phyllostomidae) and their noseleaves are morphologically similar. They differ vastly in the niche they occupy. Comparing these species allows us to relate differences in function of the noseleaf to the ecological background of bat species. METHODOLOGY/PRINCIPAL FINDINGS We simulate the spatial sensitivity of both the hearing and the emission subsystems of two species, M. microtis and P. discolor. This technique allows us to evaluate the respective roles played by the noseleaf in the echolocation system of these species. We find that the noseleaf of M. microtis focuses the radiated energy better and yields better control over the emission beam. CONCLUSIONS From the evidence presented we conclude that the noseleaves serve quantitatively different functions for different bats. The main function of the noseleaf is to serve as an energy focusing mechanism that increases the difference between the reflected energy from objects in the focal area and objects in the periphery. However, despite the gross morphological similarities between the noseleaves of the two Phyllostomid species they focus the energy to a different extent, a capability that can be linked to the different ecological niches occupied by the two species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The noseleaf of Rhinolophus formosae focuses the Frequency Modulated (FM) component of the calls

Bats of the family Rhinolophidae emit their echolocation calls through their nostrils and feature elaborate noseleaves shaping the directionality of the emissions. The calls of these bats consist of a long constant-frequency component preceded and/or followed by short frequency-modulated sweeps. While Rhinolophidae are known for their physiological specializations for processing the constant fr...

متن کامل

Neural Mechanisms for Call Processing in the Auditory Cortex of Mustached Bats: Frequency Modulated Sounds and their Lateralization

Speech processing is lateralized to the left hemisphere of the human brain, with some variation between sexes. Single unit electrophysiological recordings in the Doppler-shifted constant frequency processing (DSCF) sub-region of the mustached bat primary auditory cortex (A1) has revealed a left hemispheric advantage for processing species-specific (or conspecific) calls that at least superficia...

متن کامل

Correction: The Aerodynamic Cost of Head Morphology in Bats: Maybe Not as Bad as It Seems

At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves...

متن کامل

Dynamic Emission Baffle Inspired by Horseshoe Bat Noseleaves

The evolution of bats is characterized by a combination of two key innovations-powered flight and biosonar-that are unique among mammals. Bats still outperform engineered systems in both capabilities by a large margin. Bat biosonar stands out for its ability to encode and extract sensory information using various mechanisms such as adaptive beamwidth control, dynamic sound emission and receptio...

متن کامل

Insight on how fishing bats discern prey and adjust their mechanic and sensorial features during the attack sequence

Several insectivorous bats have included fish in their diet, yet little is known about the processes underlying this trophic shift. We performed three field experiments with wild fishing bats to address how they manage to discern fish from insects and adapt their hunting technique to capture fish. We show that bats react only to targets protruding above the water and discern fish from insects b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010